
Self-Replicating Turing Machines and Computer Viruses

Elise de Doncker1

1Western Michigan University, Kalamazoo, MI 49008, USA
elise@cs.wmich.edu

Abstract

This paper reviews self-replication in the context of (partial)
recursive functions and Turing computability. By the Church-
Turing thesis, these are equivalent to other models of com-
putation. The theory is linked to applications in the area of
computer viruses. We address the views of various authors
with respect to the (in)adequacy of Turing machine equiva-
lent models for computer viruses.

Self-replication

The book “Gödel, Escher, Bach, An Eternal Golden Braid”,
by Douglas Hofstadter (Hofstadter, 1999) gives examples of
self-replication (self-rep) and self-reference (self-ref).

Hofstadter lists a self-replicating computer program
which, called with a “template” argument as specified in
the procedure declaration part, calls itself recursively with
its own text as the template, resulting in delivering itself as
output. It is noted that the program consists of two parts, the
procedure definition and the recursive call where it uses the
template data.

In the example of self-replication of DNA, parallels are
drawn between self-rep in DNA and self-ref in a formal logic
system, the Typographical Number System (TNT). For exam-
ple, DNA strands correspond to TNT strings, genetic code to
Gödel code, and translation of RNA ⇒ proteins to arithme-
tization from N ⇒ to meta TNT. As a futher analogy, one
strand of the double-stranded DNA piece is referred to as
the template since it does not encode the DNA enzymes en-
donuclease, polumerase and ligase.

In the remainder of this paper we review recursive and
partial recursive functions, the Church-Turing thesis, recur-
sive and recursively enumerable sets, and self-replicating
programs/Turing machines. We furthermore discuss an ap-
plication to computer viruses and related computability is-
sues.

Recursive and partial recursive functions
In this section we define partial recursive and recursive func-
tions operating on strings of symbols. The definition can be
transformed to natural numbers through Gödel numbering.

Let us use the introductory definition in (Brainerd and
Landweber, 1974) of (partial) recursive functions. An al-
phabet Σ is a non-empty, finite set of symbols. W = Σ∗ is
the set of all strings that can be made with symbols from Σ
and also includes the empty string, ε.

In view of the recursive nature of the definition following,
we need a set of basis functions:

ι : W →W ι(x) = x (identity),

ς : W →W ς(x) = x+1 (successor),

ζ : W 0 →W ζ() = ε (zero function),

π : W →W 0 π(x) = () (projection).

The recursion proceeds with the use of four operators on
functions:

f ◦g(x) = f (g(x)) (composition),

f ×g(x,y) = (f (x),g(y)) (combination),

f y(x) = f ◦ f · · · ◦ f (exponentiation, y times composed),

f ∇(x,y) = x′ where f k(x,y) = (x′,1)

and k is the smallest value such that the second argument
listed becomes 1 (repetition). Repetition may not be defined
at (x,y) in view of the fact that successive compositions of f
may never yield 1 as the second argument.

A partial recursive function F : W r →W s is either one of
the basis functions, or obtained from these by a finite num-
ber of compositions, combinations, exponentiations or repe-
titions. This corresponds to the ability to implement a partial
recursive function as a program in an algorithmic language;
the program may not terminate for all arguments as the func-
tion may not be everywhere defined. A recursive function is

partial recursive and total (defined for all arguments). As a
simple example, ςy(x) = x+y is a recursive function defined
in terms of successor and exponentiation.

Church-Turing Thesis

As an amazing result/claim, the classical Church-Turing the-
sis states that the set of the recursive functions as defined
above coincides with that of the functions which can be im-
plemented by any algorithmic means (and terminate for all
arguments). Computational models including those of Tur-
ing machines (TM), Post systems, and algorithmic program-
ming languages, are all equivalent. This can be extended to
partial recursive functions by allowing, e.g., programs/TM
which do not halt for all inputs in the sense that termination
is guaranteed for arguments where the function is defined,
but may not be otherwise.

By Gödel numbering, the strings in a language are
mapped to natural numbers, and the string membership
problem in a language is mapped to classifying natural
numbers with respect to some characteristic. In this con-
text, (Hofstadter, 1999) lists various versions of the Church-
Turing thesis, of different strenghts. The “standard” version
goes as follows: “Suppose there is a method which a sen-
tient being follows in order to sort numbers into two classes.
Suppose further that this method always yields an answer
within a finite amount of time, and that it always gives the
same answer for a given number. Then some general recur-
sive function exists which gives exactly the same answers as
the sentient being’s method does”. The “isomorphism ver-
sion” (which strengthens the conclusion) is: “Suppose there
is a method which a sentient being follows in order to sort
numbers into two classes. Suppose further that this method
always yields an answer within a finite amount of time, and
that it always gives the same answer for a given number.
Then some general recursive function exists which gives ex-
actly the same answers as the sentient being’s method does.
Moreover, the mental process and the recursive function are
isomorphic in the sense that on some level there is a corre-
spondence between the steps being carried out in both com-
puter and brain”, also suggesting that the logical structure
of this calculation (on a high enough level) in the brain can
be implemented as a recursive function.

If we consider (partial) recursive functions giving an an-
swer to decision problems, then recursive functions can be
implemented by procedures which always halt and give a
YES/NO answer in all instances of the problem addressed;
whereas partial recursive functions are only guaranteed to
give a YES answer for instances of the problem where the
answer is, indeed, affirmative.

Recursive and recursively enumerable sets
A recursive set L is recognized by a TM which decides the
membership problem in L, thereby accepting inputs w ∈ L
and rejecting otherwise. Here the membership problem is
decidable, corresponding to a recursive characteristic func-
tion for L. For a recursively enumerable (r.e.) set, the mem-
bership problem is semi-decidable (which falls in the unde-
cidable class). For an r.e. language L there is a TM which
accepts strings w ∈ L but may not halt for w /∈ L. In this case,
L has a partial recursive characteristic function.

As an example, the universal language

Lu = {< M > w | w ∈ L(M)},

where < M > is a binary encoding of TM M and w∈ {0,1}∗,
is r.e. but not recursive. This relates to the undecidability
of the halting problem (for TM); i.e., it is undecidable to
determine for an arbitrary TM M and input w, whether or
not M will halt with input w.

Furthermore, a language is r.e. iff there is a TM which
enumerates the strings of the language on its tape.

A property L of r.e. languages is a set of r.e. lan-
guages L ⊆ Σ∗, such that L is said to have property L if
L ∈ L (Hopcroft and Ullman, 1979). L is called a trivial
property if L = /0 or if it consists of all r.e. languages. In-
stead of studying L , we focus on a set of encodings < M >
of TM M corresponding to its languages L(M), i.e.,

ML = {< M > | L(M) ∈ L }.

It is well-known that every non-trivial property L of
r.e. languages is undecidable, corresponding to the non-
recursiveness of ML for non-trivial L .

Some properties are r.e. whilst other ones are not. For
example,

{< M > | w ∈ L(M) f or some f ixed string w}

is r.e., and

{< M > | L(M) is a singleton}

is not r.e.

Questions about self-replicating programs/TM
With a basis of theoretical computer science aspects in pre-
vious sections, we now turn to questions related with self-
replication. These may be of practical importance, for ex-
ample, to check whether a given program replicates itself
accurately. Consider a program P which outputs strings.
Some questions are:

• Is it possible to write a program U that, when given P as
input, determines if P outputs (replicates) itself (as one of
its outputs)?

• Is it possible to write a program U that, when given P as
input, determines if P outputs only itself?

• Is it possible to write a program U that, when given P as
input, determines if P replicates itself within a set number
of steps or set time?

These questions can be formulated with the expectation that
U would decide the problem (give a yes/no answer for each
instance of the problem); or, with the expectation that U
would output “yes” in the affirmative case but may not oth-
erwise give an answer.

For example, the set

{< M > | < M > halts when run with input < M >}

is r.e. but not recursive.

Application to Computer Viruses
Programs that replicate themselves have been important in
the study of computer viruses. A computer virus is defined
by (Cohen, 1985) as a program that can infect other pro-
grams by modifying them to include a (possibly evolved)
copy of itself (so that a virus can spread to the transitive
closure of information paths from an initial source).

This gives rise to the definition of a viral set, the elements
of which produce other elements of the set upon execution.
Cohen uses a Turing machine model where each virus in a
viral set produces an element of the set on some part of the
TM tape outside of the original virus specification.

Formally, a viral set is a pair (M,V) where M is a TM and
V is a set of viruses written as strings in the tape alphabet of
M. When M (in its start state) reads v ∈ V, it writes a string
v′ ∈V somewhere else on its tape.

In (Thimbleby et al., 1998), the notion of viral infection
is associated with the following attributes:

• A trojan (Trojan horse) component, since an infected pro-
gram behaves in an unwanted manner under some condi-
tions;

• A dormancy component, as the infection may conceal it-
self;

• An infective component, since infected programs are des-
tined to infect other programs.

Cohen’s undecidability results (Cohen, 1985; Cohen,
1987; Cohen, 1989; Chess and White, 2000) show that

• There is no algorithm that can detect all viruses. Some
infected files may be missed (false negative); or non-
infected files may be detected as infected (false positive);
or no answer may be returned.

• There is no algorithm (TM) that can decide if one virus
evolves into another.

Other results (Chess and White, 2000) include that there are
viruses for which no error-free detection algorithm exists
(undetectable computer viruses).

For the study of trojans and computer viruses, a number of
authors have pointed out inadequacies with the classic (TM
equivalent) computation models. According to (Wegner,
1996; Wegner, 1997; Thimbleby et al., 1998), TM equiva-
lent models are not sufficient to describe systems that inter-
act. A virus entering a system indeed constitutes an interac-
tion (Thimbleby et al., 1998).

(Thimbleby et al., 1998) also show that the virus biolog-
ical metaphor is inadequate. They introduce a new frame-
work for modelling computer viruses and other malicious
programs, and make suggestions for the construction of vi-
rally resistant systems.

(Mäkinen, 2001) comments on (Thimbleby et al., 1998)
and uses a universal TM (UTM) at the basis of his model
for computer viruses. In this model, simulation of a viral
TM v by the UTM produces a viral TM v′ on the tape of
the UTM. (Mäkinen, 2001) finds the UTM model suitable
for addressing basic undecidability problems related to com-
puter viruses.

In their reply to Mäkinen’s paper, (Thimbleby et al., 2001)
comment, e.g. that, whilst Mäkinen’s model is appropriate
for basic undecidability issues, virus replication is too nar-
rowly specified; and the formalism fails to address infection
mechanisms, which makes it hard to explore virus preven-
tion.

Conclusions
We draw analogs between self-replicating programs (”ma-
chines” in general) and self-replicating Turing machines,
based on the Church-Turing thesis. Sayama (Sayama, 2006)
(this conference) addresses similar problems based on links
between von Neumann’s universal constructors and Turing
machines.

We distinguish between recursive sets (decidable prob-
lems), sets which are r.e. but not recursive (semi-decidable
problems) and non-r.e. sets. The latter two correspond to
undecidable problems. The question can be raised whether
being r.e. but not recursive has applications in practice.

Furthermore we discuss computer viruses and related
computability issues in the framework of self-replicating
programs.

Acknowledgments
The reviewers’ comments, especially regarding the applica-
tion to computer viruses, are greatly appreciated.

References
Brainerd, W. S. and Landweber, L. H. (1974). Theory of

Computation. John Wiley and Sons.

Chess, D. M. and White, S. R. (2000). An unde-
tectable computer virus. In Virus Bulletin Conference.
http://www.research.ibm.com/antivirus/SciPapers/
VB2000DC.htm.

Cohen, F. (1985). Computer viruses. Dissertation, USC.

Cohen, F. (1987). Computer viruses: Theory and experi-
ments. Computers and Security, 6:22–35.

Cohen, F. (1989). Computational aspects of computer
viruses. Computers and Security, 8:297–298.

Hofstadter, D. R. (1999). Gödel, Escher, Bach: An Eternal
Golden Braid. Basic Books, Perseus Book Group.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Au-
tomata Theory, Languages and Computation. Addison-
Wesley.

Mäkinen, E. (2001). Comment on ’A Framework for Mod-
elling Trojans and Computer Virus Infection. Com-
puter Journal, 44(4):321–323.

Sayama, H. (2006). Self-replicating machines attempt-
ing to solve the unsolvable. Workshop on Machine
Self-Replication, Tenth International Conference on
the Simulation and Synthesis of Living Systems (ALife
X).

Thimbleby, H., Anderson, S., and Cairns, P. (1998). A
framework for modelling trojans and computer virus
infection. Computer Journal, 41(7):444–458.

Thimbleby, H., Anderson, S., and Cairns, P. (2001). Reply
to ‘Comment on ”A Framework for Modelling Trojans
and Computer Virus Infection”’. Computer Journal,
44(4):321–323.

Wegner, P. (1996). The paradigm shift from algo-
rithms to interaction. http://jeffsutherland.com/ // pa-
pers/wegacm.pdf.

Wegner, P. (1997). Why interaction is more powerful than
algorithms. Commun. ACM, 40(5):80–91.

